Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 520, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658865

RESUMO

Acute myeloid leukaemia (AML) is a fatal haematopoietic malignancy and is treated with the conventional combination of cytarabine (Ara-C) and daunorubicin (Dau). The survival rate of AML patients is lower due to the cardiotoxicity of daunorubicin. Clinically, homoharringtonine (HHT) plus Ara-C has been reported to be equally effective as Dau plus Ara-C in some types of AML patients with less toxic effects. We utilized the clinical use of homoharringtonine in combination with Ara-C to test its combination mechanism. We found that the insensitivity of AML cells to cytarabine-induced apoptosis is associated with increased Mcl-1 stability and p38 inactivation. HHT downregulates Mcl-1, phosphorylates H2AX and induces apoptosis by activating p38 MAPK. Inactivation of p38 through inhibitors and siRNA blocks apoptosis, H2AX phosphorylation and Mcl-1 reduction. HHT enhances Ara-C activation of the p38 MAPK signalling pathway, overcoming Ara-C tolerance to cell apoptosis by regulating the p38/H2AX/Mcl-1 axis. The optimal ratio of HHT to Ara-C for synergistic lethality in AML cells is 1:4 (M/M). HHT synergistically induces apoptosis in combination with Ara-C in vitro and prolongs the survival of xenografts. We provide a new mechanism for AML treatment by regulating the p38 MAPK/H2AX/Mcl-1 axis to improve cytarabine therapy.


Assuntos
Apoptose , Citarabina , Histonas , Mepesuccinato de Omacetaxina , Leucemia Mieloide Aguda , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Mepesuccinato de Omacetaxina/farmacologia , Citarabina/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Apoptose/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Camundongos , Histonas/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fosforilação/efeitos dos fármacos , Feminino
2.
Int J Biol Macromol ; 269(Pt 2): 131896, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677681

RESUMO

The recovery of infectious wound tissues presents a significant global health challenge due to the impediments posed by the harsh healing microenvironment, which includes ongoing bacterial invasion, high oxidative stress, inflammatory response, and impaired angiogenesis. To overcome the above issues, we propose a composite hydrogel based on the multiple-crosslinked mechanism involving the covalent network of CC bonds within catechol and maleic-modified HA (CMHA), the self-assembly network of glycyrrhizic acid (GA), and the metal-polyphenol coordination induced by ZHMCe for accelerating infectious wound healing. The resulting CMHA/GA/ZHMCe hydrogels demonstrate enhanced mechanical, adhesive, antioxidative, and antibacterial properties. Importantly, the hydrogel system possesses wound environment-responsive properties that allow it to adapt to the specific therapeutic requirements of different stages by regulating various enzyme activities in the healing of infected wounds. Furthermore, the biocompatible CMHA/GA/ZHMCe shows the ability to promote cell migration and angiogenesis in vitro while reprogramming macrophages toward an anti-inflammatory phenotype due to the effective release of active ingredients. In vivo experiments confirm that the CMHA/GA/ZHMCe hydrogel significantly enhances infectious wound healing by accelerating re-epithelialization, promoting collagen deposition, regulating inflammation, and contributing to vascularization. These findings underscore the therapeutic potential of our hydrogel dressings for the treatment of bacterially infected cutaneous wound healing.

3.
ACS Appl Mater Interfaces ; 16(12): 14503-14509, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38499046

RESUMO

The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.


Assuntos
Nanopartículas , Traumatismos da Medula Espinal , Zeolitas , Humanos , Zeolitas/farmacologia , Macrófagos , Traumatismos da Medula Espinal/metabolismo , Anti-Inflamatórios/uso terapêutico
4.
Eur J Pharmacol ; 968: 176368, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316246

RESUMO

Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.


Assuntos
Sirtuína 3 , Traumatismos da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Sirtuína 3/metabolismo , Zinco/metabolismo , Traumatismos da Medula Espinal/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , GTP Fosfo-Hidrolases/metabolismo
5.
Int Immunopharmacol ; 125(Pt A): 111092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883817

RESUMO

INTRODUCTION: Spinal cord injury (SCI) is a central nervous system injury that is primarily traumatic and manifests as autonomic dysfunction below the level of injury. Our previous studies have found that zinc ions have important effects on the nervous system and nerve repair, promoting autophagy and reducing inflammatory responses. However, the role of zinc ions in vascular regeneration is unclear. AIMS: We investigated the effect of zinc ions after spinal cord injury from the perspective of a hypoxic microenvironment, and elucidated the role of VEGF-A secreted by microglia for vascular regeneration after spinal cord injury, providing new ideas for the treatment of spinal cord injury. RESULTS: Zinc promotes functional recovery after spinal cord injury by regulating VEGF-A secretion from microglia. On the one hand, VEGF-A secreted by microglia promotes angiogenesis through the PI3K/AKT/Bcl-2 pathway and improves the hypoxic microenvironment after spinal cord injury. On the other hand, VEGF-A secreted by microglia was positively correlated with platelet endothelial cell adhesion molecule-1 (CD31), and zinc could increase the association between microglia and blood vessels. CONCLUSION: Zinc promoted microglia secretion of VEGF-A, increased vascular endothelial cell proliferation and migration through the PI3K/AKT/Bcl-2 pathway, and inhibited microglia apoptosis.


Assuntos
Microglia , Traumatismos da Medula Espinal , Íons/metabolismo , Íons/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zinco/metabolismo
6.
ACS Biomater Sci Eng ; 9(10): 5709-5723, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37713674

RESUMO

Spinal cord injury is an impact-induced disabling condition. A series of pathological changes after spinal cord injury (SCI) are usually associated with oxidative stress, inflammation, and apoptosis. These pathological changes eventually lead to paralysis. The short half-life and low bioavailability of many drugs also limit the use of many drugs in SCI. In this study, we designed nanovesicles derived from macrophages encapsulating selenium nanoparticles (SeNPs) and metformin (SeNPs-Met-MVs) to be used in the treatment of SCI. These nanovesicles can cross the blood-spinal cord barrier (BSCB) and deliver SeNPs and Met to the site of injury to exert anti-inflammatory and reactive oxygen species scavenging effects. Transmission electron microscopy (TEM) images showed that the SeNPs-Met-MVs particle size was approximately 125 ± 5 nm. Drug release assays showed that Met exhibited sustained release after encapsulation by the macrophage cell membrane. The cumulative release was approximately 80% over 36 h. In vitro cellular experiments and in vivo animal experiments demonstrated that SeNPs-Met-MVs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and reduced the expression of inflammatory (TNF-α, IL-1ß, and IL-6) and apoptotic (cleaved caspase-3) cytokines in spinal cord tissue after SCI. In addition, motor function in mice was significantly improved after SeNPs-Met-MVs treatment. Therefore, SeNPs-Met-MVs have a promising future in the treatment of SCI.


Assuntos
Metformina , Nanopartículas , Selênio , Traumatismos da Medula Espinal , Camundongos , Animais , Selênio/farmacologia , Selênio/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia
7.
Adv Mater ; 35(48): e2302503, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37681753

RESUMO

Only a minority of rheumatoid arthritis (RA) patients achieve disease remission, so the exploration of additional pathogenic factors and the development of new therapeutics are needed. Here, strong correlations among the cell-free DNA (cfDNA) level and the inflammatory response in clinical synovial fluid samples and RA disease activity are discovered. The important role of cfDNA in disease development in a collagen-induced arthritis (CIA) murine model is also demonstrated. Building on these findings, a novel therapeutic based on anti-inflammatory (M2) macrophage-derived exosomes as chassis, that are modified with both oligolysine and matrix metalloproteinase (MMP)-cleavable polyethylene glycol (PEG) on the membrane, is developed. After intravenous injection, PEG-enabled prolonged circulation and C─C motif chemokine ligand-directed accumulation together result in enrichment at inflamed joints. Following subsequent MMP cleavage, the positively charged oligolysine is exposed for cfDNA scavenging, while exosomes induce M2 polarization. By using a classical CIA murine model and a newly established CIA canine model, it is demonstrated that the rationally designed exosome therapeutic substantially suppresses inflammation in joints and provides strong chondroprotection and osteoprotection, revealing its potential for effective CIA amelioration.


Assuntos
Artrite Experimental , Artrite Reumatoide , Exossomos , Humanos , Animais , Cães , Camundongos , Modelos Animais de Doenças , Exossomos/patologia , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Macrófagos/patologia
8.
Brain Res ; 1821: 148563, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661010

RESUMO

OBJECTIVE: The flavonoid Naringin (Nar) has been extensively investigated and found to have multiple pharmacological properties, including neuroprotection. Although recent reports have shown that Nar can effectively treat spinal cord injury (SCI), its potential mechanism remains unknown. This study aimed to investigate the effects of Nar on motor recovery and inflammatory responses after SCI and to elucidate its mechanism. METHODS: SCI rat models were established using Allen's weight-drop method. The rats were intragastrically given Nar (40 mg/kg) for 21 d, and their motor function before surgery and on the 1st, 3rd, 7th, 14th, 21st days after surgery was assessed by the Basso-Beattie-Bresnahan (BBB) scale and examined by the grid walking test (GWT). The enzyme linked immunosorbent assay (ELISA) was used to detect the interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 levels in rat spinal cord tissues, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure the mRNA expression levels of microglial activation markers CD68 and ionized calcium binding adaptor molecule 1 (Iba-1), M1 markers inducible nitric oxide synthase (iNOS) and IL-6, and M2 markers CD206 and Arginase 1 (Arg1). The expression levels of peroxisome proliferator-activated receptor gamma/nuclear factor kappa B (PPAR-γ/NF-κB) pathway-related proteins in rat spinal cord tissues were determined using western blotting. RESULTS: Nar significantly increased the BBB score and decreased the mean error rate of GWT in SCI rats. Additionally, Nar effectively inhibited microglial activation and expression of M1 markers in spinal cord tissues. It also elevated M2 polarization-related gene expression and significantly lowered the levels of inflammatory factors. Further investigation showed that Nar enhanced the expression of PPAR-γ protein and inhibited NF-κB pathway activity. CONCLUSION: Nar promotes functional recovery by regulating microglial polarization and inhibiting the inflammatory response in SCI, and its mechanism may be related to the PPAR-γ/NF-κB signaling pathway activity.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Ratos , Animais , NF-kappa B/metabolismo , PPAR gama/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo
9.
Mol Pharm ; 20(9): 4453-4467, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37525890

RESUMO

This study aims to investigate the potential therapeutic effect of exosomes derived from macrophages loaded with curcumin (Exos-cur) on the healing of diabetic wounds. As a new type of biomaterial, Exos-cur has better stability, anti-inflammation, and antioxidation biological activity. In in vitro experiments, Exos-cur can promote the proliferation, migration, and angiogenesis of HUVECs (human umbilical vein endothelial cells) while reducing the ROS (reactive oxygen species) produced by HUVECs induced by high glucose, regulating the mitochondrial membrane potential, reducing cell oxidative damage, and inhibiting oxidative stress and inflammation. In the in vivo experiment, the Exos-cur treatment group had an increased percentage of wound closure and contraction compared with the diabetic wound control group. Hematoxylin-eosin staining (HE) and Masson staining showed that the Exos-cur treatment group had more advanced re-epithelialization, and the generated mature granulation tissue was rich in a large number of capillaries and newly deposited collagen fibers. Western blot and immunofluorescence analyses showed that Exos-cur can inhibit inflammation by activating the Nrf2/ARE pathway, upregulate the expression of wound healing-related molecules, promote angiogenesis, and accelerate wound healing in diabetic rats. These results show that Exos-cur has a good therapeutic effect on diabetic skin defects and provide experimental evidence for the potential clinical benefits of Exos-cur.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Exossomos , Ratos , Humanos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Exossomos/metabolismo , Cicatrização , Células Endoteliais da Veia Umbilical Humana , Macrófagos , Inflamação/metabolismo
10.
J Tissue Eng ; 14: 20417314231180033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333896

RESUMO

Spinal cord injury (SCI) is a serious refractory disease of the central nervous system (CNS), which mostly caused by high-energy trauma. Existing interventions such as hormone shock and surgery are insufficient options, which relate to the secondary inflammation and neuronal dysfunction. Hydrogel with neuron-protective behaviors attracts tremendous attention, and black phosphorus quantum dots (BPQDs) encapsulating with Epigallocatechin-3-gallate (EGCG) hydrogels (E@BP) is designed for inflammatory modulation and SCI treatment in this study. E@BP displays good stability, biocompatibility and safety profiles. E@BP incubation alleviates lipopolysaccharide (LPS)-induced inflammation of primary neurons and enhances neuronal regeneration in vitro. Furthermore, E@BP reconstructs structural versus functional integrity of spinal cord tracts, which promotes recovery of motor neuron function in SCI rats after transplantation. Importantly, E@BP restarts the cell cycle and induces nerve regeneration. Moreover, E@BP diminishes local inflammation of SCI tissues, characterized by reducing accumulation of astrocyte, microglia, macrophages, and oligodendrocytes. Indeed, a common underlying mechanism of E@BP regulating neural regenerative and inflammatory responses is to promote the phosphorylation of key proteins related to AKT signaling pathway. Together, E@BP probably repairs SCI by reducing inflammation and promoting neuronal regeneration via the AKT signaling pathway.

11.
Mater Today Bio ; 15: 100331, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35795138

RESUMO

Rheumatoid arthritis (RA) is an autoimmune-mediated inflammatory disease that seriously threatens patients' life. Different stages of RA require different treatments, but the accurate classification of the RA remains challenging. Herein, we conducted an in-depth study of 73 RA patients to investigate RA development. CD 19, a biomarker of B cell dysfunction, was found to be strongly associated with the development of severe symptoms. On the other hand, CD19 was significantly reduced, when effective clinical treatment relieved the symptoms. Therefore, it is proposed that B cell-inducing factors are important for the development of RA to the advanced stage and can be used to assist in the accurate classification of RA development. Furthermore, we speculated that drugs that could properly modulate B cells might have efficacy in advanced-stage RA. From this perspective, R-dihydrolipoic acid (R-DHLA)-stabilized cerium-modified gold nanoclusters (AuNCs) (R-DHLA-AuNCs-Ce) (∼3.4 â€‹nm) were developed for comprehensive treatment of advanced-stage RA. According to our established rat models of collagen-induced arthritis (CIA), R-DHLA-AuNCs-Ce restored the comprehensive changes of cytokines to a normal state by regulating B cell activity within 24 â€‹h. Furthermore, the immune responses elicited by B cells were memory-suppressed after detachment from R-DHLA-AuNCs-Ce and the advanced symptoms of RA in CIA rats were successfully reversed to a healthy state. Compared to clinical drugs such as methotrexate (MTX) and etanercept, R-DHLA-AuNCs-Ce were found to more efficiently suppress B cell immunity mitigating advanced-stage RA.

13.
Sens Actuators B Chem ; 362: 131764, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35370362

RESUMO

The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.

14.
Acta Biomater ; 144: 168-182, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358735

RESUMO

Osteoarthritis (OA), a widespread degenerative disease characterized by cartilage destruction, has emerged as a public health challenge in the current aging society. In addition to applied steroids and surgery, near-infrared (NIR) sensitive nano-enzyme for the treatment of osteoarthritis through mitochondrial repair and cartilage protection is attractive and promising. In this study, a NIR sensitive multifunctional heterostructure (EGCG (Epigallocatechin gallate) decorated Au-Ag nano-jars (E@Au-Ag)) was introduced as an enzyme-sensitive active nanoplatform for the treatment of osteoarthritis. Molecular biology results indicated that E@Au-Ag possesses intrinsic properties of anti-oxidative stress and was able to reduce the apoptosis rate of chondrocytes by 83.3%. The area of the intra-articular joint cavity injected with E@Au-Ag can be elevated to 46.6 °C under NIR to promote the release of EGCG further to induce cartilage regeneration. X-ray radiography and section staining showed that E@Au-Ag reduced cartilage damage and decreased OARSI scores by approximately 52% after 8 weeks of treatment in a surgically induced OA model. The results demonstrated that this multifunctional enzyme-like nanoplatform with a synergistic NIR sensitive property to facilitate cartilage migration and regeneration repair provides a promising OA treatment strategy. STATEMENT OF SIGNIFICANCE: 1. NIR-sensitive nano-enzyme is gaining much attention in the field of biomedical materials. 2. EGCG decorated Au-Ag nano-heterostructures were utilized as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. 3. The obtained multifunctional Au-Ag nano-heterostructures are promising for osteoarthritis treatment.


Assuntos
Cartilagem Articular , Catequina , Osteoartrite , Catequina/análogos & derivados , Catequina/farmacologia , Condrócitos , Humanos , Osteoartrite/tratamento farmacológico
15.
Biomater Adv ; 133: 112668, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35074238

RESUMO

Spinal cord injury (SCI) causes a range of pathological responses, including oxidative stress, inflammation and apoptosis. In SCI treatment, whether an effective drug preparation can cross the blood-spinal cord barrier (BSCB) to the injury site is closely related to its therapeutic effect. Metformin (Met) is a glucose-lowering drug that shows a good effect for the treatment of SCI. However, it cannot cross the BSCB, which limits its application. In this study, we prepared glutathione-modified macrophage-derived cell membranes encapsulating metformin nanogels (Met-CNG-GSH) to solve this problem. Drug release and pharmacokinetics study results indicated that Met-CNG-GSH exhibits a slow release effect, and in vivo imaging demonstrated that Met-CNG-GSHs accumulated at the injury site, indicating that it has a good targeting effect. Animal experiments demonstrated that Met-CNG-GSH has a good therapeutic effect in alleviating oxidative stress, inflammation, and apoptosis. Therefore, Met-CNG-GSH represents a potential treatment for SCI.


Assuntos
Metformina , Traumatismos da Medula Espinal , Animais , Membrana Celular/metabolismo , Glutationa/uso terapêutico , Inflamação/patologia , Macrófagos/metabolismo , Metformina/farmacologia , Nanogéis , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico
16.
Acta Biomater ; 137: 199-217, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644613

RESUMO

Multidrug-resistant (MDR) bacteria-induced infection is becoming a huge challenge for clinical treatment, especially for non-healing diabetic wound infections, which increase patient mortality. MRSA infections and delayed wound healing (methicillin-resistant Staphylococcus aureus) accounted for a higher proportion. Although surgical debridement and continuous use of antibiotics are still the main clinical treatments, new multifunctional therapeutic nanoplatform are attractive for MIDW. Thus, in the present study, black phosphorus quantum dots (BPQDs) encapsulated in hydrogel (BPQDs@NH) were utilized as nanoplatforms for MIDW treatment to achieve the multifunctional properties of NIR (near infrared) responsiveness, ROS (reactive oxygen species) generation and antibacterial activity. Upon NIR irradiation, the temperature of the BPQDs@NH-treated MIDW area rapidly increased up to 55 °C for sterilization. In vitro experiments showed that BPQDs@NH exerted a synergistic effect on inhibiting MRSA by producing of ROS, lipid peroxidation, glutathione, adenosine triphosphate accumulation and bacterial membrane destruction upon NIR irradiation. The resulting BPQDs@NH achieved an effective sterilization rate of approximately 90% for MRSA. Furthermore, animal experiments revealed that BPQDs@NH achieved an effective closure rate of 95% for MIDW after 12 days by reducing the inflammatory response and regulating the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Meanwhile, intravenous circulation experiments showed good biocompatibility of BPQDs, and no obvious damage to rat major organs was observed. The obtained results indicated that BPQDs@NH achieved the synergistic functions of NIR-responsiveness, ROS generation, and antibacterial activity and promoted wound healing, suggesting that they are promising multifunctional nanoplatforms for MIDW healing. STATEMENT OF SIGNIFICANCE: 1. NIR-triggered ROS-generating and antibacterial nanoplatforms are attractive in the wound healing field. 2. In this work, black phosphorus quantum dots encapsulated in a hydrogel were used as a nanoplatform for treating MRSA infected wounds. 3. The obtained materials have achieved an effective sterilization rate for MRSA and effective wound closure rate.


Assuntos
Diabetes Mellitus Experimental , Staphylococcus aureus Resistente à Meticilina , Pontos Quânticos , Animais , Antibacterianos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Fósforo , Ratos , Espécies Reativas de Oxigênio , Fator A de Crescimento do Endotélio Vascular , Cicatrização
17.
Regen Biomater ; 8(6): rbab067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34858635

RESUMO

Arthritis is a kind of chronic inflammatory autoimmune disease, which can destroy joint cartilage and bone, leading to joint pain, joint swelling, and limited mobility. Traditional therapies have many side effects or focus too much on anti-inflammation while neglecting joint repair. In this experiment, we combined Epigallocatechin gallate (EGCG) with extracellular vesicles derived from macrophages to treat rheumatoid arthritis. Sustained-release resulted in a significant decrease in chondrocyte expression of hypoxia-inducible factor 1-alpha, a decrease in apoptosis-related proteins Cytochrome C, Caspase-3, Caspase-9, and Bax. Molecular biological analysis showed that extracellular vesicles-encapsulated EGCG (EVs-EGCG) more significantly upregulated type II collagen expression by about 1.8-fold than EGCG alone, which was more beneficial for arthritis repair. Animal experiments revealed that these EGCG-coated extracellular vesicles significantly reduced swelling, decreased synovial hyperplasia, repaired cartilage, and attenuated arthritis-related pathology scores in arthritic rats. Measurement data showed that EVs-EGCG treatment reduced joint swelling by approximately 39.5% in rheumatoid rats. In vitro studies have shown that this EVs-EGCG can increase the expression of cartilage type II collagen and reduce apoptosis of chondrocytes. Moreover, it was demonstrated in vivo experiments to reduce cartilage destruction in rheumatoid arthritis rats, providing a solution for the treatment of rheumatoid arthritis.

18.
J Nanobiotechnology ; 19(1): 373, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789266

RESUMO

BACKGROUND: Uncontrollable inflammation and nerve cell apoptosis are the most destructive pathological response after spinal cord injury (SCI). So, inflammation suppression combined with neuroprotection is one of the most promising strategies to treat SCI. Engineered extracellular vesicles with anti-inflammatory and neuroprotective properties are promising candidates for implementing these strategies for the treatment of SCI. RESULTS: By combining nerve growth factor (NGF) and curcumin (Cur), we prepared stable engineered extracellular vesicles of approximately 120 nm from primary M2 macrophages with anti-inflammatory and neuroprotective properties (Cur@EVs-cl-NGF). Notably, NGF was coupled with EVs by matrix metalloproteinase 9 (MMP9)-a cleavable linker to release at the injured site accurately. Through targeted experiments, we found that these extracellular vesicles could actively and effectively accumulate at the injured site of SCI mice, which greatly improved the bioavailability of the drugs. Subsequently, Cur@EVs-cl-NGF reached the injured site and could effectively inhibit the uncontrollable inflammatory response to protect the spinal cord from secondary damage; in addition, Cur@EVs-cl-NGF could release NGF into the microenvironment in time to exert a neuroprotective effect against nerve cell damage. CONCLUSIONS: A series of in vivo and in vitro experiments showed that the engineered extracellular vesicles significantly improved the microenvironment after injury and promoted the recovery of motor function after SCI. We provide a new method for inflammation suppression combined with neuroprotective strategies to treat SCI.


Assuntos
Anti-Inflamatórios , Vesículas Extracelulares/química , Macrófagos/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores , Traumatismos da Medula Espinal/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Curcumina/química , Curcumina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia
19.
J Nanobiotechnology ; 19(1): 362, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758829

RESUMO

BACKGROUND: Healing of MRSA (methicillin-resistant Staphylococcus aureus) infected deep burn wounds (MIDBW) in diabetic patients remains an obstacle but is a cutting-edge research problem in clinical science. Surgical debridement and continuous antibiotic use remain the primary clinical treatment for MIDBW. However, suboptimal pharmacokinetics and high doses of antibiotics often cause serious side effects such as fatal complications of drug-resistant bacterial infections. MRSA, which causes wound infection, is currently a bacterium of concern in diabetic wound healing. In more severe cases, it can even lead to amputation of the patient's limb. The development of bioactive nanomaterials that can promote infected wound healing is significant. RESULTS: The present work proposed a strategy of using EGCG (Epigallocatechin gallate) modified black phosphorus quantum dots (BPQDs) as therapeutic nanoplatforms for MIDBW to achieve the synergistic functions of NIR (near-infrared)-response, ROS-generation, sterilization, and promoting wound healing. The electron spin resonance results revealed that EGCG-BPQDs@H had a more vital photocatalytic ability to produce singlet oxygen than BPQDs@H. The inhibition results indicated an effective bactericidal rate of 88.6% against MRSA. Molecular biology analysis demonstrated that EGCG-BPQDs significantly upregulated CD31 nearly fourfold and basic fibroblast growth factor (bFGF) nearly twofold, which were beneficial for promoting the proliferation of vascular endothelial cells and skin epidermal cells. Under NIR irradiation, EGCG-BPQDs hydrogel (EGCG-BPQDs@H) treated MIDBW area could rapidly raise temperature up to 55 °C for sterilization. The MIBDW closure rate of rats after 21 days of treatment was 92.4%, much better than that of 61.1% of the control group. The engineered EGCG-BPQDs@H were found to promote MIDBW healing by triggering the PI3K/AKT and ERK1/2 signaling pathways, which could enhance cell proliferation and differentiation. In addition, intravenous circulation experiment showed good biocompatibility of EGCG-BPQDs@H. No significant damage to major organs was observed in rats. CONCLUSIONS: The obtained results demonstrated that EGCG-BPQDs@H achieved the synergistic functions of photocatalytic property, photothermal effects and promoted wound healing, and are promising multifunctional nanoplatforms for MIDBW healing in diabetics.


Assuntos
Fósforo , Polifenóis/farmacologia , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Chá/química , Animais , Queimaduras/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fósforo/química , Fósforo/farmacologia , Processos Fotoquímicos , Ratos , Ratos Sprague-Dawley , Cicatrização/efeitos dos fármacos
20.
J Nanobiotechnology ; 19(1): 281, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544425

RESUMO

BACKGROUND: Spinal cord injury (SCI) is damage to the central nervous system (CNS) that causes devastating complications from chronic pain to breathing problems. Unfortunately, few effective and safe treatments are known to relieve the damages of SCI. Nanomedicines are used for the treatment of SCI with relatively few side effects, but only depending on the delivery of additional drugs, which increase complexity to the treatment. Considering the urgent need for saving SCI patients, it is important to develop promising nanobiotechnology for relieving their pains. METHODS: The clinical survey was used to investigate SCI patients, thereafter the therapy plan was designed. The receiver-operating characteristics (ROC) curves of the prediction model were built to find symptoms after SCI. The treatment plan (i.e. immunosuppressive strategy) was designed by manufacturing therapies based on gold nanoclusters (AuNCs). The response of the immune cells (macrophages) was studied accordingly. The western blot, reactive oxygen species (ROS) activity assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (RT-qPCR), and immunochemical staining were used for evaluation of the in vivo and in vitro therapeutic effects. RESULTS: We found increased monocytes/macrophages (M/Ms) levels in 114 SCI subjects (44.7% with severe SCI complications) by the clinical survey. Additionally, the enhanced macrophage level was found to be closely related to the walking disorder after SCI. Since macrophages were central effector cells of the immune system, we assumed that the immune-suppressing strategies could be used for SCI therapy. Thereafter, AuNCs were stabilized by dihydrolipoic acid (DHLA) enantiomers (including DL-DHLA, R-DHLA; A racemic mixture (R and S) was denoted as DL; R and S refer to Rectus and Sinister), obtaining DL-DHLA-AuNCs and R-DHLA-AuNCs, respectively. In addition, zinc-modified DL-DHLA and R-DHLA stabilized AuNCs (i.e., DL-DHLA-AuNCs-Zn and R-DHLA-AuNCs-Zn) were investigated. Among these AuNCs, R-DHLA-AuNCs-Zn showed the most remarkable therapeutic effect for promoting the polarization of pro-inflammatory macrophages and reducing neuronal ROS-induced apoptosis and inflammation in vitro and in vivo; the lesion size was decreased and the survival rate of ventral neurons is higher. CONCLUSIONS: R-DHLA-AuNCs-Zn have comprehensive therapeutic capabilities, especially the immune-suppressing effects for the therapy of SCI, which is promising to relieve the pain or even recover SCI for the patients.


Assuntos
Ouro/química , Nanopartículas Metálicas/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Zinco/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Linfócitos/citologia , Linfócitos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Monócitos/citologia , Monócitos/imunologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Prognóstico , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Estereoisomerismo , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA